skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 3, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. NMR metabolomics was applied toM. mercenariaexposed to a series of sublethal doses of Brevetoxins for the targeted metabolic pathway and early marker discovery. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  4. Free, publicly-accessible full text available December 1, 2025
  5. Abstract While the positive relationship between plant diversity and ecosystem functioning is frequently observed and often attributed to direct plant–plant interactions, it remains unclear whether and how the effects of plant diversity endure through soil legacy effects, particularly at the level of genotypic diversity. We manipulated the genotypic diversity ofScirpus mariqueterand tested its soil legacy effects on a conspecific phytometer under low‐ and high‐water availability conditions. We found that genotypic diversity enhanced phytometer productivity through soil legacies, with stronger effects under low‐water availability conditions, improving its resistance to water stress. Moreover, this effect was attributed to the association between asexual and sexual reproductive strategies by increasing ramet number to ensure plant survival under low‐water availability and promoting sexual reproduction to escape stress. The observed diversity effects were primarily associated with increased levels of microbial biomass in soils trained by populations with diverse genotypes. Our findings highlight the importance of plant genotypic diversity in modulating ecosystem functioning through soil legacies and call for management measures that promote genetic diversity to make ecosystems sustainable in the face of climate change. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  6. An ensemble data-learning approach based on proper orthogonal decomposition (POD) and Galerkin projection (EnPOD-GP) is proposed for thermal simulations of multi-core CPUs to improve training efficiency and the model accuracy for a previously developed global POD-GP method (GPOD-GP). GPOD-GP generates one set of basis functions (or POD modes) to account for thermal behavior in response to variations in dynamic power maps (PMs) in the entire chip, which is computationally intensive to cover possible variations of all power sources. EnPOD-GP however acquires multiple sets of POD modes to significantly improve training efficiency and effectiveness, and its simulation accuracy is independent of any dynamic PM. Compared to finite element simulation, both GPOD-GP and EnPOD-GP offer a computational speedup over 3 orders of magnitude. For a processor with a small number of cores, GPOD-GP provides a more efficient approach. When high accuracy is desired and/or a processor with more cores is involved, EnPOD-GP is more preferable in terms of training effort and simulation accuracy and efficiency. Additionally, the error resulting from EnPOD-GP can be precisely predicted for any random spatiotemporal power excitation. 
    more » « less
  7. The classical proper orthogonal decomposition (POD) with the Galerkin projection (GP) has been revised for chip-level thermal simulation of microprocessors with a large number of cores. An ensemble POD-GP methodology (EnPODGP) is introduced to significantly improve the training effectiveness and prediction accuracy by dividing a large number of heat sources into heat source blocks (HSBs) each of which may contains one or a very small number of heat sources. Although very accurate, efficient and robust to any power map, EnPOD-GP suffers from intensive training for microprocessors with an enormous number of cores. A local-domain EnPOD-GP model (LEnPOD-GP) is thus proposed to further minimize the training burden. LEnPOD-GP utilizes the concepts of local domain truncation and generic building blocks to reduce the massive training data. LEnPOD-GP has been demonstrated on thermal simulation of NVIDIA Tesla Volta™ GV100, a GPU with more than 13,000 cores including FP32, FP64, INT32, and Tensor Cores. Due to the domain truncation for LEnPOD-GP, the least square error (LSE) is degraded but is still as small as 1.6% over the entire space and below 1.4% in the device layer when using 4 modes per HSB. When only the maximum temperature of the entire GPU is of interest, LEnPOD-GP offers a computing speed 1.1 million times faster than the FEM with a maximum error near 1.2oC over the entire simulation time. 
    more » « less
  8. The need for full-chip dynamic thermal simulation for effective runtime thermal management of multicore processors has been growing in recent years due to the rising demand for high-performance computing. In addition to simulation efficiency and accuracy, a high resolution is desirable in order to accurately predict crucial hot spots in the chip. This work investigates a simulation technique derived from proper orthogonal decomposition (POD) for full-chip dynamic thermal simulation of a multicore processor. The POD projects a heat transfer problem onto a mathematical space constituted by a finite set of basis functions (or POD modes) that are generated (or trained) by thermal solution data collected from direct numerical simulation (DNS). Accuracy and efficiency of the POD simulation technique influenced by the quality of thermal data are examined thoroughly, especially in the areas with high thermal gradients. The results show that if the POD modes are trained by good-quality data, the POD simulation offers an accurate prediction of the dynamic thermal distribution in the multicore processor with an extremely small degree of freedom (DoF). A reduction in computational time over four orders of magnitude, compared to the DNS, can be achieved for full-chip dynamic thermal simulation with a resolution as fine as the DNS. The study has also demonstrated that the POD approach can be used to rigorously verify the accuracy of solutions offered by DNS tools. A practical approach is proposed to further enhance the accuracy and efficiency of the proposed full-chip thermal simulation technique. 
    more » « less